THANK YOU FOR VISITING SWEATSCIENCE.COM!
My new Sweat Science columns are being published at www.outsideonline.com/sweatscience. Also check out my new book, THE EXPLORER'S GENE: Why We Seek Big Challenges, New Flavors, and the Blank Spots on the Map, published in March 2025.
- Alex Hutchinson (@sweatscience)
***
A few months ago, I blogged about a placebo-controlled test of the “live high, train low” altitude training paradigm (here, and with a follow-up here). That test found no benefit to altitude training, which prompted some rather heated responses — including a comment from someone who works for an altitude tent company:
One bogus study cannot change the work that guys like David Martin and the Australia of Sport (AIS) have performed.
As it happens, the Australian Institute of Sport, working with Australia’s national swim team, has just published a massive new study of altitude training in the European Journal of Applied Physiology. They took 37 elite swimmers and divided them into three groups:
- “Classic” altitude training: three weeks in Sierra Nevada, Spain (2,320 m) or Flagstaff (2,135 m);
- LHTL, spending at least 14 hours a day for three weeks at simulated 3000 m at the Australian Institute of Sport in Canberra;
- a control group that didn’t go to altitude.
To assess the effects of altitude training, they looked at blood parameters like total hemoglobin mass, and measured race performances 1, 7, 14 and 28 days after returning from altitude, as well as assessing season-long performance profiles (including performance at the World Championships).
Let’s start with the good news. Unlike the previous study, this study did find a clear increase in total hemoglobin mass, of about 4%, in both altitude groups. Here’s the individual scatter:
But what about performance? There, the results weren’t so good:
Or in words:
Swimming performance was substantially impaired for up to 7 days following 3 weeks of either Classic or LHTL altitude training. Despite ~4% increases in tHb resulting from both Classic and LHTL altitude training, there were no clear beneficial performance effects in the 28 days following altitude… A season-long comparison of two tapered performances at major championships also did not reveal a benefit for athletes who completed mid-season altitude training despite the substantial physiological changes associated with the altitude.
So does this “prove” that altitude training doesn’t help endurance performance? Of course not. But it’s a pretty interesting data point. This is the Australian swim team — one of the world’s powerhouses — supported by the Australian Institute of Sport, who have done lots of research into altitude training, and believe in it enough to construct an altitude house on their campus. They understand how it’s supposed to be done, and they executed it effectively enough to produce hemoglobin changes… but still, they didn’t manage to improve performance. If anything, they got worse.
If you’re doing altitude training, are you confident that you’re doing it better than they are?
[UPDATE: Sam McGlone and Paulo Sousa raised an important point on Twitter: the swim distances that they tested in this study were 100 or 200m. That’s pretty short – I don’t know the numbers for swimming, but maybe 50% aerobic at most? Here’s what the researchers say:
Based on the calculated aerobic contribution to energy production during competitive 100 and 200 m swimming races, the 3.8% increase in tHb we observed could elicit a 0.3–0.7% improvement in race time… Although improvements of this magnitude are equivalent to the smallest worthwhile change for swimming performance, detecting such changes can be difficult due to the variability associated with racing and the modest sample sizes available when targeting an elite athlete population.
Certainly something to keep in mind in interpreting this study.]