The incredible unaging triathlete

THANK YOU FOR VISITING SWEATSCIENCE.COM!

As of September 2017, new Sweat Science columns are being published at www.outsideonline.com/sweatscience. Check out my bestselling new book on the science of endurance, ENDURE: Mind, Body, and the Curiously Elastic Limits of Human Performance, published in February 2018 with a foreword by Malcolm Gladwell.

- Alex Hutchinson (@sweatscience)

***

Here’s a pretty graphic illustration, from a recent paper by Dr. Vonda Wright and her colleagues (hat tip to Laura McIntyre for the forward), of the importance of lifelong physical activity:

It’s from a new study freely available at The Physician and Sportsmedicine that took detailed measurements of 40 masters athletes between the ages of 40 and 81, and found a surprising lack of age-related muscle loss:

This study contradicts the common observation that muscle mass and strength decline as a function of aging alone. Instead, these declines may signal the effect of chronic disuse rather than muscle aging.

 

Training one limb to strengthen the other

THANK YOU FOR VISITING SWEATSCIENCE.COM!

As of September 2017, new Sweat Science columns are being published at www.outsideonline.com/sweatscience. Check out my bestselling new book on the science of endurance, ENDURE: Mind, Body, and the Curiously Elastic Limits of Human Performance, published in February 2018 with a foreword by Malcolm Gladwell.

- Alex Hutchinson (@sweatscience)

***

An interesting figure from a new Australian study in the European Journal of Applied Physiology:

The subjects in the study did eight weeks of heavy weight training — using only one leg (their dominant one). As you can see, they dramatically increased strength in both legs. This effect is well known, but I still think it’s pretty cool! The goal of this particular study was to try to figure exactly how this happens, using magnetic pulses to the brain to help assess the role of the nervous system. They did indeed find a significant reduction in “corticospinal inhibition” in both legs, suggesting that the training improves the transmission of the signal from the brain to the muscle, and this improvement applies to both sides of the body.

The point? Well, as the researchers note, it’s something to bear in mind if you have an injury in one leg or one arm. You might be able to keep the injured limb strong without even exercising it. Of course, you have to balance that against the risk of creating physical imbalances. I guess the ideal would be to train enough to increase strength without actually putting on muscle. As the researchers conclude, clinical trials of this approach are needed.

More data on cryotherapy

THANK YOU FOR VISITING SWEATSCIENCE.COM!

As of September 2017, new Sweat Science columns are being published at www.outsideonline.com/sweatscience. Check out my bestselling new book on the science of endurance, ENDURE: Mind, Body, and the Curiously Elastic Limits of Human Performance, published in February 2018 with a foreword by Malcolm Gladwell.

- Alex Hutchinson (@sweatscience)

***

Another study on whole-body cryotherapy (or “cryosaunas,” or whatever you want to call them), from the same group at the French National Institute of Sport that published a similar study last summer. The full text is freely available online, along with a press release.

The study took nine well-trained runners, and had them perform three “hilly” treadmill runs, each time with a different recovery routine:

  1. Cryotherapy (3 minutes at -110 C), taken immediately, 24 hours, and 48 hours after the run;
  2. Far infrared therapy, also taken at the same three intervals;
  3. Nothing (“passive”).

The basic results, according to the paper: cryotherapy “accelerates recovery from exercise-induced muscle damage to a greater extent than far infrared or passive modalities.” That’s based on better results for perceived pain and maximal voluntary muscle contraction. Here’s the muscle data:

So yeah, one hour after the run, the cryotherapy allowed the runners to clench a little harder, and those results appeared to more or less persist for a couple of days. But these aren’t placebo-proof, since the runners weren’t blinded to the modality. What about a more placebo-proof measure of recovery? Well, not so good. Creatine kinase levels in the blood weren’t improved. In fact, if you look at the data and squint a bit, you might conclude that far infrared is the best choice! Uh oh.

Seriously, this study is a good start, but cryotherapy still has a ways to go. I would have liked to see it compared to conventional ice-bath therapy (which itself seems to produce more ambiguous results than you’d expect when it’s tested). Because surely we’re hoping that this therapy is actually an improvement on the current standard-of-care (which is not far infrared), rather than just a way to save seven minutes after a game or workout.

was the best recovery modality to hasten recovery from EIMD by limiting the torque loss and subjective sensations of pain

Cardio vs weights for visceral and liver fat

THANK YOU FOR VISITING SWEATSCIENCE.COM!

As of September 2017, new Sweat Science columns are being published at www.outsideonline.com/sweatscience. Check out my bestselling new book on the science of endurance, ENDURE: Mind, Body, and the Curiously Elastic Limits of Human Performance, published in February 2018 with a foreword by Malcolm Gladwell.

- Alex Hutchinson (@sweatscience)

***

A new study in the American Journal of Physiology revisits a very familiar topic — cardio versus weights — to determine which is better for reducing dangerous visceral and liver fat. A total of 155 subjects completed one of three eight-month training programs:

  1. Aerobic (AT): ~12 miles per week at 75% VO2max;
  2. Resistance(RT): 3 days a week, 8 exercises, 3 sets of 8-12;
  3. Aerobic/resistance (AT/RT): both the above programs combined.

At the end of the eight months, they used some pretty sophisticated tools to measure the outcomes, including CT scans to measure levels of visceral and liver fat. Here are some of the key outcomes:

And here’s how the researchers sum up the findings:

First, a resistance training program–even a very substantial one–did not significantly reduce body mass, visceral fat, liver fat or ALT liver enzyme levels. RT also did not reduce total abdominal fat, nor did it improve fasting insulin resistance. Second, in contrast to RT, a typical vigorous AT program resulted in significant reductions in visceral fat, liver fat and abdominal subcutaneous fat, and also led to improvements in circulating ALT and HOMA (fasting insulin resistance).

The results aren’t too surprising: as the researchers note, this particular aerobic training program likely burned about 67% more calories than the resistance program. It does seem a bit strange to me that adding resistance training to the aerobic training seems to make things worse rather than better — but the overall analysis in the paper says that AT and AT/RT are statistically indistinguishable. In other words, the weights add nothing. Don’t get me wrong: weights are useful for a lot of things, and this study was only testing a few specific outcomes. But on those outcomes — and they’re very important ones, particularly if you’re overweight — cardio trumps weights.

Post-exercise refuelling: all at once, or spread out?

THANK YOU FOR VISITING SWEATSCIENCE.COM!

As of September 2017, new Sweat Science columns are being published at www.outsideonline.com/sweatscience. Check out my bestselling new book on the science of endurance, ENDURE: Mind, Body, and the Curiously Elastic Limits of Human Performance, published in February 2018 with a foreword by Malcolm Gladwell.

- Alex Hutchinson (@sweatscience)

***

We’ve all heard about the post-exercise “window” for refuelling to maximize recovery and adaption: you need to take in carbs and protein with 0.5-2 hours. But does the timing really matter for building muscle? A new study from Stuart Phillips’ group at McMaster University compared two tactics for post-workout protein intake. Once group took 25 grams of whey protein immediately after a set of leg-extension exercises; the other group received the same 25 grams of whey protein in 10 2.5-gram doses every 20 minutes for 200 minutes. They measured “muscle protein synthesis” — basically a very accurate way of assessing how well you’re stimulating muscle growth after a single bout rather than having to run the experiment for several months to actually see muscle growth — and found that it was much higher in the group that took their protein all at once. After six hours, protein synthesis was elevated by 193% in the single-shot group and just 121% in the prolonged group.

The question this study was seeking to answer actually relates to the difference between whey protein (which is absorbed quickly) and casein (which is absorbed more slowly: the 2.5 grams of whey every 20 minutes was chosen to mimic the absorption pattern of casein). The problem is that if you compare two different proteins in a study, then you’re changing a bunch of different factors at once — the absorption timing, but also factors like the amount of leucine, a branched-chain amino acid thought to be key for muscle growth. Since both groups received 25 grams of whey (and thus identical amounts of leucine), this shows that absorption rate is key.

Practical takeaway: this was a muscle protein synthesis study, not a training study, so you have take the results cautiously. But it does suggest that if you’re trying to build muscle, taking in a big dose (i.e. 25 grams) of protein as soon as possible is preferable to snacking over the course of a few hours. It also confirms previous findings suggesting that whey (found in dairy products) has some advantages over other protein sources.